If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+33x+140=0
a = 1; b = 33; c = +140;
Δ = b2-4ac
Δ = 332-4·1·140
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-23}{2*1}=\frac{-56}{2} =-28 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+23}{2*1}=\frac{-10}{2} =-5 $
| –7u=–8u−7 | | .8+6x-10x=16-8x | | 167=122-u | | 6r=10r+4 | | 3x/2x-3+2/2x-3=-3/4 | | 8-1x-13=-25 | | 2(y-7)-5y=-2 | | 11500=0.6x | | 3(8+2x)=0 | | 5(6+3x)=135 | | 4(3-5x)=112 | | x/5-12=-11 | | 2(-3+3x)=-42 | | 3x+5x-56+7-93=13 | | 9=-1-z | | 3x^2-80x+170=0 | | 2-3+3x)=-42 | | x-4x+7=16 | | 4-m/6=18 | | -5(1x+5)=-75 | | 10/4=8/y | | 3(5x+10)=150 | | 14=a/3-5 | | -5(1x+7)=-55 | | -4(-6+5x)=24 | | -a/2+5=13 | | 12–(x–2)=-42 | | -7(6+3x)=-273 | | -9x-5x=64-6 | | -5(6+6x)=-150 | | 3(5-5x)=0 | | (5x-10)-(3x+8)=0 |